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Abstract. A modificationisproposedof the Blonder,Tinkham and Klapwijk (BTK) theory for 
heterogeneous normal metal-superconductor (N-S) point contact. Contact is heterogeneous 
when the normal state electronic dispersion relations in the left-hand and right-hand elec- 
trodes are different (in the original BTK theory dispersion relations in both electrodes are 
equal). 

For characterization of the dispersion relation difference we use the amplitude of reflec- 
tion r ( E )  at the clear interface for electrons incoming from the normal metal electrode with 
energy EF + E when the ‘superconductive’ electrode is in the normal state. We calculate the 
amplitudes of ordinary and Andreev reflection at the N-s interface for electrons incoming 
from the normal metal electrode as functions of r (E) .  This enables us to obtain an expression 
for differential conductance of the point contact as a function of applied voltage and r(eV).  

For a suitable function r(eV) the calculated differential conductance decreases with 
increasing voltage in the low-voltage region (as is observed experimentally for some point 
contacts between normal metal-high-T, superconductor) in contrast to the BTK theory which 
provides only non-decreasing dependences of differential conductance against voltage. 

1. Introduction 

Point contact spectroscopy is a useful tool for investigating the quasi-particle properties 
of solids. When applied to the classical superconductors it provides information on the 
energy gap and on the Eliashberg function of electron-phonon interaction. 

The theory of Blonder, Tinkham and Klapwijk (BTK) [l] represents a suitable basis 
for interpretation of the point contact spectra (differential conductance versus voltage) 
if one electrode is normal metal and the second one is ordinary s-wave superconductor, 
at least for low voltage (eV G 2A). 

But there are some experimental curves which cannot be explained within the 
framework of the BTK theory if a high T, superconductor is used as the second electrode 
(for example in [2]). To interpret these measurements it is probably necessary either to 
devise a new theory (if superconductivity is not s-wave) or to modify the BTK theory if 
superconductivity is s-wave (as is probably the case in high-T, superconductors [3]). Our 
goal in this paper is to modify the BTK theory. 

Blonder et a1 [l] obtained the expression for current through the ballistic normal 
metal-superconductor point contact in the form (for the one-dimensional case) 
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I = 2N(EF)euFS J m  d E  [fo(E-eV) -fo(E)][l +A(E) - B(E)] .  (1) 
--m 

Here N(EF) refers to the one-spin electronic density of states at Fermi energy EF in the 
normal electrode, S is a point contact cross-sectional area, uF is the Fermi velocity of 
electronsin normal metal andfo(E) is the equilibrium Fermi-Dirac distribution function. 
B ( E )  is the probability of the ordinary reflection at the N-s interface for electrons 
incoming from normal metal with energy EF + E andA(E) is the probability of Andreev 
reflection. 

In the real three-dimensional situation we will have 

dE[fo(E-eV)-fO(E)l+ - dS(E) u , [ l  +A(E,  q )  - B ( E , q ) ]  
I -  i: u,>o "1 

instead of expression (1) (see [l] and the method used for deriving the I-Vcharacteristic 
in [4]). Here cp is the angle of incidence of the particle to the interface; A(E, q )  and 
B(E ,  cp) are in general dependent on q .  $ dS(E) is the integral over the equi-energy 
surface corresponding to energy EF + E in k-space (in the normal metal electrode). 
Expanding the A(E,  q )  and B(E ,  cp) into the Taylor series with respect to sin2 cp, 
integrating the members of series over equi-energy surface and taking into account that 
A ( E ,  q )  and B ( E ,  cp) are slowly varying functions of cp around q = 0, it is possible to 
show that the main contribution to the current is provided by the first member of 
expansion, e.g. expression 

So to study a qualitative behaviour of the I-V characteristics of a point contact it is 
sufficient (and mathematically convenient) to deal with the one-dimensional geometry 
(the case of the BTK theory), e.g. to start with expression (1). Of course, if we are 
interested in quantitative values or if the investigated materials are strongly anisotropic, 
it is necessary to use the exact expression for current and to work in three-dimensional 
geometry. For the purpose of this paper it is sufficient to use the one-dimensional 
approximation (as in the original BTK theory). 

To evaluate the quantities A ( E )  and B ( E ) ,  BTK used Bogoliubov equations which 
describe the excitations above the ground state of superconductor (for simplicity they 
solved the one-dimensional case) 

H o ( x ,  d/dx)u(x) + A ( x ) u ( x )  = Eu(x) 

-Ho(x, d/dx)u(x) + A(x)u(x) = E U ( X )  

where 

Ho(x,  d/dx) = (-h2/2m)d2/dx2 - EF + V(X). 

Here A(x) is the energy gap of superconductor and V(x) is the one-particle potential. 
In this formalism the two-element column vector formed from u(x) and u(x)  can 

be interpreted as a two-component excitation wave function (in a superconductor it 
represents a combination of particle and hole). 

To model the effect of any interfacial elastic scattering BTK [l] included in equation 
(2) a &function repulsive potential located at the interface in the form V(x) = H6(x) .  
Quantity H (or Z = mH/h2kF) characterizes the barrier strength at the interface (oxide 
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layer, localized disorder in contact, etc.). The change of 2 enables one to model the 
crossover from metallic (2 = 0) to tunnel junction behaviour (2 2 10) of the contact. 

The BTK solution of equation (2)  for the normal electrode isJ,,, +freR where 

The quantities A ( E )  and B(E)  required in (l), are defined as A(E)  = a*(E)a(E) and 
B(E)  = b*(E)b(E).  In paper [l] the concrete forms of a(E)  and b(E)  were obtained by 
applying suitable boundary conditions to the solutions of equation (2) for left-hand and 
right-hand electrodes. The BTK result is 

u(E)  = A/[E + (1 + 2Z2)(E2 - A' ) I  ' j 2  

b(E)  = [ -2(Z2 + iZ)(E2 - A2)1/2/[E+ (1 +2Z2) (E2  - A2)1/2]. 

(3) 

(4) 

Using (3), (4) and (1) Blonder et a1 [l] obtained the expressions for current and 
for the differential conductance dZ/d V of the contact. Their result is that differential 
conductance is constant (for 2 = 0) or increases (for 2 > 0) with increasing voltage for 
eV=s A .  

Among the measured spectra of dZ/dV against V for a high-i', superconductor 
there are curves decreasing with increasing voltage for low voltage. Such non-standard 
characteristics are obtained especially for low-resistance pressure point contacts [2]. 

In paper [5]  we explained some features of these anomalous curves by the occurrence 
of a Josephson junction inside the superconductor near the contact. But also in this case 
the differential conductance around zero bias is determined only by the point contact 
normal metal-superconductor alone. So it is necessary to modify the BTK theory. 

In the BTK theory it is assumed that the Hamiltonian Ho in (2) is the same in both 
electrodes and the normal electrode is distinguished from the superconducting one only 
by putting A = 0. Our modification of the BTK theory consists of changing the form of 
quantities A ( E )  and B ( E )  in the expression (l), due to the fact that Hamiltonian H o  is, 
in general, different in the left-hand and right-hand electrodes. 

In our treatment a quantity which characterizes the difference between Hamiltonians 
H o  for different electrodes is an amplitude of reflection r (E)  at the clear interface for the 
electron incoming from normal metal with energy EF + E if both electrodes are in the 
normal state. 

We derived the modified amplitudes a(E)  and b(E)  as functions of A ,  Z and r (E)  for 
the one-dimensional case. Using (1) and our results a(E)  and b(E)  we derived the 
expression for differential conductance as a function of r(eV) for low temperature. For 
small Z (clear interface), differential conductance is determined by r(eV) and I (  -eV) 
and it can be a decreasing function of voltage. 

2. Modification of the BTK theory 

The expression (1) for current through ballistic point contact is general but quantities 
A ( E )  and B(E)  are dependent on amodel chosen for normal metal and asuperconductor. 
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For calculation of A(E)  = a*(E)a(E) and B ( E )  = b*(E)b(E) we use Bogoliubov 
equations (for the one-dimensional case) describing an excitation in a N-S (in general 
heterogeneous) system 

H(x, d/Wf(x) = Ef(x) 

H(x, d/dx) = [(l - @ ( X ) ) E , ( ~ / ~ X )  + @ ( x ) E R ( ~ / ~ x )  + 6(x)HI73 + @(x)AT~. 
( 5 )  

Here T, are Pauli matrices: 

7 3  = ( '  '1. 
0 -1 

O(x) = 1 for x 2 0  and @ ( x )  = 0 for x < 0  and ~LcR,(d/d~)exp(ik) = 
(EL(R)(k) -. EF) exp(ikx). ~ , ( ~ ) ( k )  is normal-state electronic dispersion relation in the 
left-hand (right-hand) electrode. Member d(x)Hin (5) represents (as in the BTK theory) 
elastic repulsion at N-s interface (due to an oxide layer, deformations, etc.).f(x) is the 
two-component excitation wave function. 

We are interested in the solution of equation ( 5 )  having the form f (x)  = 

7 1  = (; ;) 

f,nc(x) +fre~(x) forx  < 0: 

L n c  = ( 0) exp(ikpx) frefl = a(E)  (4 exp(ikhx) + b(E)  Cl exp( - ikpx). (6) 
1' 

We assume that particle group velocity direction is identical to the direction of k .  
Subscript p or h determines the kind of excitation (particle or hole). Wavevectors kp and 
kh as functions of E are determined by equations eL(kp) = EF + E and &L(kh) = EF - E.  

We suppose that we are able to solve equation (5) for A = 0, e.g. that amplitudes r 
and t in the following expressions are known (the first subscript determines the kind of 
incoming excitations and the second one determines the direction of its group velocity- 
direction p is from left to right and direction n is opposite). 

1 

0 
fi = (1 - @(x)) (i) [exp(ik,x) + rpp exp(-kpx)l+ @(XI ( t,, exp(iqpx) 

(A) tpn [exp(-ikpx) + ( 0 ) (exp(-iqpx) + rpn exp(iqpx) ] 
f 3  = (1 - @(XI) (:) thn(exp(ikhx) + 

1 
f 2  = (1 - (7) 

[exp(iqhx) -k rhn  exp(-iqhx)]. 

(this corresponds to the case of homogeneous contact), 
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The goal is to express the amplitudes a(E) and b(E)  from (6) by means of the 

Writing 
amplitudes r ,  t ,  a’ and bo. 

and taking into account that 

it is possible to rewrite equation (5) in the form 

Here G+(E ,  x ,  x ’ )  is the Green’s function of the linear operator occurring on the left- 
hand side of equation ( 5 ) :  

[ ( E  + i0)l - H(x, d/dx)]G+(E, x ,  x ‘ )  = 6 ( x  - x’)l  

Forx < 0 

Using in sequence different variants of the equation for Green’s function (analogous to 
the equation (lo) for the wave function and obtained by direct rewriting of the differential 
equation for Green’s function into the integro-differential form) we get 

where 

H l ( x ,  d/dx) + H 2 ( x ,  d/dx) = H ( x ,  d/dx>. 

H,(x, d/dx) is a part of the Hamiltonian H ( x ,  d/dx) suitably chosen according to the 
situation investigated-equal or different normal-state dispersion relations in both 
electrodes, zero or non-zero barrier H 6 ( x ) ,  etc. H&, d/dx) is the rest of Hamiltonian 
H ( x ,  d/dx), and 

[ ( E +  i0)l - H , ( x , d / d x ) ] G ~ , ( E , x , x ’ )  = 6 ( x  -x ’ ) l .  

Taking into account equations (7), (9) and (10) it is possible to transform the right-hand 
side of equation (10) into a form containing only linear combinations of functions 

(:) exp( -ik,x) and ( y )  exp(ikhx) 

for x < 0. It is not necessary to derive the explicit mathematical forms of G+(E,  x ,  x ’ )  
and GAl ( E ,  x ,  x ’ )  because only a formal decomposition of G+ ( E ,  x ,  x ’ )  by means of 
GA, ( E ,  x ,  x ‘ )  and H , ( x ,  d/ax) is used and validity of expressions (7), (9) and (10) is 
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taken into account during this transformation. From this transformed equation we 
obtained the following relations among amplitudes: 

(11) 
tpp a:p thn 

U =  
- b!prhn - + rpnrhn(b:pb!p - u:pa!p> 

and ti = 1 + ri. 
By similar means to a and b it is possible to express the full amplitudes of reflection 

rpp and rpn by means of the amplitudes of reflection at the &function potential for 
homogeneous contact (where the right-hand electrode is made of the same material as 
the left-hand one) and amplitudes of reflection at clear interface ri. The results are 

rpp = l;p + t;p[r;p/(l - r;pr;h)ltin 

rpn = rLn + tLn[rEn/(l - r;nr;p)]f;p. 

r6 pp - - rpn 6 = -  iZ(1 + iZ)-' 

(13) 

(14) 

(15) 

If the left-hand electrode is made from ordinary metal (Cu, Ag, Au, etc) then 

and z = mH/h2kF (as in the BTK theory). 
Amplitudes aEP, b"p, agp, b:p are not mutually independent. Using the fact that 

functions (9) are the solutions of equation (8) and performing some simple trans- 
formations of equation (8) it is possible to show that 

yhp(E, A ,  ( E 2  - A')'/') = [y PP ( - E ,  - A ,  - ( E 2  - A2)'/')]* (16) 

rhn(E) = [ rpn( -E) l* .  (17) 

rbp(E) = -&(E) = r (E)  (18) 

where y = a0 or y = bo. By similar means it is possible to show that 

If ~ ~ ( k )  and &R(q) are even functions of k and q then 

and r ( E )  is a real function if EF & E lie in the conduction bands in both electrodes. 
Now we assume that the left-hand electrode is ordinary metal, &R(q) is an even 

function of q and is a smooth function of q around EF. So we can use for a!p, b:p the BTK 
results for Z = 0. From ( 3 )  and (4) we have 

bOpp = 0 = bo hp a:p = A[E + ( E 2  - A')1'2]-1 = a:p. 

Finally we obtain for a and b (using (11)-(18)) 

U =  A ( l  + r(E))(l  - r(-E))D- '  

b = E(r(E)  - r ( - E ) ) ( l  - 2iZ)D-' 

+ [ r ( ~ ) + r ( - E ) - 2 ( 2 *  +iZ)(1 +r(E))(1 +r(-E))]D-' 

and 

D = E[1 - r (E)r ( -E)+i2Z(r(E)-r ( -E))]  

+ [ 1 + r(E)r( - E )  + 2Z2( 1 + r(E))(  1 + I (  -E))](E2 .- A2)l12. 

For expression T(E) = 1 + aa* - b*b in equation (1) we have for E < A 
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T(E)  = N ( E  < A)/D(E < A) 

N ( E  < A) = 2A2 (1 + r(E))(1- r( -E))(1 - r(E)r( - E ) )  

D ( E < A )  = E2(1-r(E)r(-E))2+[2ZE(r(E)-r(-E))+X(E)]2 

X(E) = [ 1 + r(E)r( -E)  + 2Z2(1 + r (E))( l+ r(-E))](A2 - E 2 )  ' I2  

f o r E > A  

T(E)  = N ( E  > A ) / D ( E  > A) 

N ( E > A )  = 2(1 -r2(E))E2(1 - r 2 ( - E ) )  +2(1 - r 2 ( E ) )  

x E[ 1 + r2( - E )  + 2Z2( 1 + r( - E ) ) 2 ] ( E 2  - A2) + 2A2(  1 + r ( E ) )  

x (1 - r( - E))(r(  E )  - I (  - E ) )  

D(E  > A) = [E( 1 - r(E)r( -E) )  + X ' ( E ) ]  + 4 E 2 Z 2  (r( E )  - I (  - E ) ) 2  

X ' ( E )  = [ 1 + r(E)r( -E)  + 2Z2( 1 + r (E) ) (  1 + I (  - E ) ) ] ( E 2  - A2)'12. 

10605 

(21) 

Finally, the measured quantity (differential conductance dZ/d V) has (for low tempera- 
ture) the form 

1 + zy1 + r(o))2 
d l / d V =  GD(eV) = GDN(0) - r 2 ( o )  T(eV) (23) 

where GDN(0) is the differential conductance for the same point contact but with both 
electrodes in the normal state and for zero bias 

GDN(0) = 2N(EF)e2uFS(1 - r2(0))/[l + Z2(1 + ~ ( o ) ) ~ ] .  

3. Discussion and conclusion 

We derived the amplitudes of ordinary (b)  and Andreev (a)  reflection at a N-s interface 
with explicitly expressed contributions due to the superconductivity of the right-hand 
electrode (amplitudes a', bo) ,  due to the repulsive potential at interface (quantity 2) 
and due to the different dispersion relations in the left-hand and right-hand electrodes 
(amplitudes r i ,  ti). As a measure of the difference in the dispersion relations we used the 
amplitude of reflection r ( E )  at the clear interface for electrons incoming from the left- 
hand electrode if both electrodes are in the normal state. 

If the BTK results are applicable for the amplitudes a", b" (where the left-hand 
electrode is from ordinary metal and the electronic dispersion relation in the right- 
hand electrode is a smooth function of wavevector around the Fermi energy) further 
simplification of the expressions for a and b is possible. We obtained amplitudes a 
(19) and b (20) as functions of the barrier strength Z at the interface (oxide layer, 
deformations, etc) and only one amplitude of reflection at clear interface r (E) .  With this 
in hand we calculated the differential conductance of the point contact (23). 

Function r(E)  represents a model parameter in our results. If some model electronic 
dispersion relation for superconductor is chosen it is possible to calculate r ( E )  and then, 
according to (23), to evaluate the differential conductance for point contact normal 
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metal-chosen superconductor. When r (E)  = 0 in the relevant energy interval our 
relations (19) and (20) take the BTK form (3) and (4). 

For large voltage eV 9 A coefficient T(eV), defined by (22)’ approaches the elec- 
tronic coefficient of transmission through the interface for both electrodes in the normal 
state. Differential conductance for low temperature is proportional to the T(eV) so it 
can serve for large eV and clear interface (small 2) for investigation of the normal-state 
dispersion relation in the ‘superconducting’ electrode (due to the dependence of r(E) 
on dispersion relation). 

For small voltage, expression (21) takes the form 

2(1- r2(0)) 
(1-r2(0)+r(eV)-r(-eV)). 

T(eV) - [ l  +r2(0) + 222(1+ r(0))2]2 

So differential conductance around zero bias is determined by the processes of trans- 
mission of electrons and holes through the interface. If r (E)  is suitably chosen dZ/dV 
can be a decreasing function of voltage for small V (in contrast to the original BTK 
theory). 

We showed that the difference in the electronic dispersion relations of the electrodes 
in the N-spoint contact affects the differential conductance. dZ/d Vcan also be a decreas- 
ing function of V .  The influence of r ( E )  decreases as 2 increases. For large 2 the 
dominant contribution to the rpp, rpn and rhn is due to the energy-independent quantity 
2. So it is possible to observe the manifestation of the normal state electronic dispersion 
relations in point contacts with clear interface (small 2). In contacts with large 2 (classical 
tunnelling junctions) this phenomenon is suppressed. 
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